skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Chen, Pei"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Single-crystal inorganic halide perovskites are attracting interest for quantum device applications. Here we present low-temperature quantum magnetotransport measurements on thin film devices of epitaxial single-crystal CsSnBr3, which exhibit two-dimensional Mott variable range hopping (VRH) and giant negative magnetoresistance. These findings are described by a model for quantum interference between different directed hopping paths, and we extract the temperature-dependent hopping length of charge carriers, their localization length, and a lower bound for their phase coherence length of ∼100 nm at low temperatures. These observations demonstrate that epitaxial halide perovskite devices are emerging as a material class for low-dimensional quantum coherent transport devices. 
    more » « less
  2. null (Ed.)
  3. null (Ed.)
  4. Motivated by the exciting properties of metal halide perovskites in photovoltaic applications, there is an evolving need to further explore the limitations of this class of materials in broader fields and high end optoelectronics, which requires better control over the film structure, defect levels, and quality. Epitaxial growth has been ubiquitously deployed in the semiconducting industry. This affords routes to precisely align the atomic arrangement to control the structure and strain and achieve the highest levels of optoelectronic performance. In this review, the recent emergence and progress in the epitaxial growth of metal halide perovskites are introduced within the context of epitaxial and quasiepitaxial approaches, and recent advances are surveyed from growth methods to application integration. The main criteria distinguishing epitaxy and quasiepitaxy, i.e., lattice matching and ordering, can be deployed to direct the selection of proper substrates, growth methods, and precursors for various applications. 
    more » « less
  5. null (Ed.)